Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

Hydroxonium hydrate tris(2,4,6-tri-amino-1,3,5-triazin-1-ium) bis[bis-(pyridine-2,6-dicarboxylato)manganate(II/III)] hydroxide pyridine-2,6-dicarboxylic acid solvate pentahydrate

Hossein Aghabozorg, ${ }^{\text {a }}$ Zohreh Derikvand, ${ }^{\text {a }}$ Marilyn M. Olmstead ${ }^{\text {b }}$ and Jafar Attar Gharamaleki ${ }^{\text {a }}$
${ }^{\text {a }}$ Faculty of Chemistry, Tarbiat Moallem University, Tehran, Iran, and ${ }^{\text {b }}$ Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616-5292, USA
Correspondence e-mail: olmstead@chem.ucdavis.edu

Received 6 September 2008
Accepted 6 October 2008
Online 18 October 2008
For charge balance in the title compound, $\left(\mathrm{H}_{5} \mathrm{O}_{2}\right)\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}_{6}\right)_{3}{ }^{-}$ $\left[\mathrm{Mn}\left(\mathrm{C}_{7} \mathrm{H}_{3} \mathrm{NO}_{4}\right)_{2}\right]_{2}(\mathrm{OH}) \cdot \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$, it is assumed that the metal atom site is disordered $\mathrm{Mn}^{\mathrm{II}} / \mathrm{Mn}^{\mathrm{III}}$, probably due to partial air oxidation of the starting $\mathrm{Mn}^{\mathrm{II}}$ species. The formula unit of the complex contains a hydroxonium hydrate cation, $\mathrm{H}_{5} \mathrm{O}_{2}{ }^{+}$, also known as the Zundel cation, with twofold symmetry. The $\mathrm{O} \cdots \mathrm{O}[2.445(10) \AA$ and $\mathrm{O} \cdots \mathrm{H}$ distances [1.24 (2) \AA] in the $\mathrm{H}_{5} \mathrm{O}_{2}{ }^{+}$cation indicate a strong hydrogen bond. In addition, there is a hydroxide ion that is disordered with respect to a twofold rotation axis. One of the melaminium groups and the pyridine-2,6-dicarboxylate (pydc) ligand also reside on crystallographic twofold axes. The coordination environment of the Mn ion is distorted octahedral. Three intermolecular $\mathrm{C}=\mathrm{O} \cdots \pi$ interactions are observed, with distances of 3.536 (4), 3.262 (4) and 3.750 (4) \AA between carboxylate $\mathrm{C}=\mathrm{O}$ groups and the centroids of the aromatic rings of pydc and melaminium. There are numerous $\mathrm{O}-$ $\mathrm{H} \cdots \mathrm{O}, \mathrm{O}-\mathrm{H} \cdots \mathrm{N}, \mathrm{N}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. Most of the components of the structure are organized into one plane.

Comment

Melamine, used in the synthesis of plastics, has recently been implicated in the food industry as an impurity in powdered milk and pet food products and as a causative agent in the production of kidney stones in infants and in pets. With oxalic acid, one of the main constituents of kidney fluids, a protontransfer salt of [melaminiumH $\left.\mathrm{H}_{2}\right]\left[\mathrm{C}_{2} \mathrm{O}_{2} \mathrm{H}\right]_{2}$ is formed (Zhang et al., 2005). Melamine is also known to form melaminiumH H^{2+} salts with trifluoroacetic acid (Perpétuo \& Janczak, 2006) and other strong acids. With somewhat weaker acids, such as pyridine-2,6-dicarboxylic acid $\left(\mathrm{pydcH}_{2}\right)$, both the mono- and
diprotonated species have been described (Sharif et al., 2006). It is pertinent to study these proton-transfer salts in combination with metal ions in order to model the biological species that may exist in kidney disease. The crystal structures of metal complexes involving $\mathrm{Cd}^{\mathrm{II}}$ (Aghabozorg, Aghajani \& Sharif, 2006), $\mathrm{Zn}^{\mathrm{II}}$ (Aghajani et al., 2006), $\mathrm{Bi}^{\mathrm{III}}$ (Sharif, Aghabozorg \& Moghimi, 2007), $\mathrm{Pb}^{\mathrm{II}}$ (Sharif et al., 2006), $\mathrm{Co}^{\mathrm{II}}$ (Aghabozorg et al., 2008) and $\mathrm{Ni}^{\mathrm{II}}$ (Sharif, Aghajani \& Aghabozorg, 2007) are known. In the asymmetric unit of the title compound, (I), one-and-a-half molecules of melamine are each monoprotonated and crystallize with bis(pyridine-2,6-dicarboxylato)manganate(II/III), a neutral molecule of pydcH H_{2}, one-half of a $\mathrm{H}_{5} \mathrm{O}_{2}{ }^{+}$cation, one-half of a hydroxide anion and two-and-a-half molecules of water. Although it is beyond the scope of this report to compare all the metal complexes, it is significant that the synthesis of these complexes can be accomplished by a one-pot method, mixing acid, base and simple metal salt to form crystalline products. We were surprised to find that the product material in this case contains the Zundel cation, $\mathrm{H}_{5} \mathrm{O}_{2}{ }^{+}$, and that the Mn atom is apparently in a disordered mixed-valent $\mathrm{Mn}^{\mathrm{II}} / \mathrm{Mn}^{\mathrm{III}}$ state. Both $\mathrm{Mn}^{\mathrm{II}}$ and $\mathrm{Mn}^{\text {III }}$ complexes of salts of the bis complex, $\mathrm{Mn}(\text { pydc })_{2}$, have been described previously, for example, with $\mathrm{Mn}^{\text {II }}$ (MacDonald et al., 2004; Aghabozorg, Ghasemikhah et al., 2006) and with $\mathrm{Mn}^{\text {III }}$ (Limburg et al., 1997).

Compound (I) is depicted in Fig. 1. The Mn atom is hexacoordinated by two N atoms (N 1 and N 2) and four O atoms (O1, O3, O5 and O7) from carboxylate groups of two pydc groups in a distorted octahedral arrangement. The dihedral angle between these two coordinated pydc groups is $88.63(5)^{\circ}$, which shows that the ligands are almost perpendicular to each other. For charge balance, it was assumed that the metal atom site is disordered $\mathrm{Mn}^{\mathrm{II}} / \mathrm{Mn}^{\mathrm{III}}$, probably due to partial air oxidation of $\mathrm{Mn}^{\mathrm{II}}$. However, this assumption has not been confirmed by any noncrystallographic methods. No difference-map peaks satisfied the alternative models, i.e. that the melaminium H^{+}was melaminium $\mathrm{H}_{2}{ }^{2+}$ or that one of the coordinated carboxylate groups or water molecules was protonated.

The $\mathrm{Mn}-\mathrm{N}$ and $\mathrm{Mn}-\mathrm{O}$ distances (Table 1) are longer than those seen in related $\mathrm{Mn}^{\mathrm{III}}$ complexes, which average 2.020 (8) and 2.01 (13) \AA, respectively (Limburg et al., 1997; Huang et al., 2004). However, they are also shorter than the average of 34 observations [Cambridge Structural Database (CSD), ConQuest Version 1.10; Allen, 2002) for $\mathrm{Mn}^{\mathrm{II}}$ in pydc coor-

Figure 1
A view of the various constituents of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry codes: (i) $-x, y,-\frac{1}{2}-z$, (ii) $-x, y, \frac{1}{2}-z$.]
dination compounds, namely 2.22 (6) and 2.30 (7) \AA for $\mathrm{Mn}-\mathrm{N}$ and $\mathrm{Mn}-\mathrm{O}$, respectively (CSD refcodes BIPJER, EJAMEH, IHELAI, LOYYON, LOYYUT, MABNIN, MABNOT, NEQPEF, QARZEP, SAQQUX, XEGDIW, XENJEG, MIGZEI and XIMHAD).

The formula unit of the complex contains one $\mathrm{H}_{5} \mathrm{O}_{2}{ }^{+}$cation that resides on a twofold rotation axis. One of the melaminiumH ${ }^{+}$groups and the pydc also reside on crystallographic twofold axes. In addition, there is an $\mathrm{OH}^{-}(\mathrm{O} 15-\mathrm{H} 15)$ ion that is disordered with respect to a twofold rotation axis.
There are three notable $\mathrm{C}=\mathrm{O} \cdots \pi$ intermolecular interactions between $\mathrm{C}=\mathrm{O}$ groups and the centroids of the aromatic rings of pydc and melaminiumH ${ }^{+}$(Table 3). As shown in Fig. 2, the packing of the structure can be described by layers that contain almost all the consituent species. The main parts that are not in these layers are the perpendicular pydc ligands. By reference to Fig. 1, the hydrogen bonding that

Figure 2
A packing diagram for (I), viewed perpendicular to the [101] direction, showing the presence of layers in the structure.
leads to these layers can be envisioned. A notable grouping of two melaminiumH ${ }^{+}$cations, water and pydc yields seven strong hydrogen bonds.
In pet food contamination studies involving dogs and cats (Filigenzi et al., 2008), melamine and its metabolites are present in kidney tissue. In consideration of the number of intermolecular interactions present in this and similar structures and the rich carboxylic acid environment in the kidneys, the pathology of melamine is not at all surprising.

Experimental

The reaction between solutions of pyridine-2,6-dicarboxylic acid ($\mathrm{pydcH}_{2} ; 100 \mathrm{mg}, 1 \mathrm{mmol}$) in water $(10 \mathrm{ml}), 2,4,6$-triamino-1,3,5triazine (melamine) $(110 \mathrm{mg}, 1 \mathrm{mmol})$ in water $(10 \mathrm{ml})$ and $\mathrm{Mn}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}(72 \mathrm{mg}, 0.5 \mathrm{mmol})$ in water $(5 \mathrm{ml})$ in a 2:2:1 molar ratio gave pale-yellow needles after slow evaporation of the solvent at room temperature.

Crystal data

$\left(\mathrm{H}_{5} \mathrm{O}_{2}\right)\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}_{6}\right)_{3}\left[\mathrm{Mn}\left(\mathrm{C}_{7} \mathrm{H}_{3}-\right.\right.$	$\beta=108.819(3)^{\circ}$
$\left.\left.\mathrm{NO}_{4}\right)_{2}\right]_{2}(\mathrm{OH}) \cdot \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	$V=5822.9(6) \AA^{3}$
$M_{r}=1462.98$	$Z=4$
Monoclinic, $C 2 / c$	Mo $K \alpha$ radiation
$a=27.1406(16) \AA$	$\mu=0.55 \mathrm{~mm}^{-1}$
$b=23.1672(13) \AA$	$T=90(2) \mathrm{K}$
$c=9.7838(6) \AA$	$0.55 \times 0.18 \times 0.08 \mathrm{~mm}$

Data collection

Bruker SMART APEXII diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.754, T_{\text {max }}=0.958$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.078$
$w R\left(F^{2}\right)=0.189$
$S=1.33$
6671 reflections
484 parameters
11 restraints

$$
\begin{aligned}
& \beta=108.819(3)^{\circ} \\
& V=5822.9(6) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.55 \mathrm{~mm}^{-1} \\
& T=90(2) \mathrm{K} \\
& 0.55 \times 0.18 \times 0.08 \mathrm{~mm}
\end{aligned}
$$

32194 measured reflections
6671 independent reflections 6153 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.027$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}=0.56 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.57 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

Mn1-N1	$2.149(4)$	$\mathrm{Mn} 1-\mathrm{O} 5$	$2.231(3)$
$\mathrm{Mn} 1-\mathrm{N} 2$	$2.172(4)$	$\mathrm{Mn} 1-\mathrm{O} 7$	$2.238(4)$
$\mathrm{Mn} 1-\mathrm{O} 3$	$2.213(3)$	$\mathrm{Mn} 1-\mathrm{O} 1$	$2.245(4)$
			$93.41(13)$
$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{N} 2$	$174.99(15)$	$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{O} 7$	$144.88(12)$
$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{O} 3$	$73.38(14)$	O	$\mathrm{Mn}-\mathrm{Mn}-\mathrm{O} 7$
N2-Mn1-O3	$111.27(13)$	$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{O} 1$	$72.91(14)$
N1-Mn1-O5	$108.61(14)$	$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{O} 1$	$102.46(14)$
N2-Mn1-O5	$72.85(13)$	$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{O} 1$	$146.27(13)$
$\mathrm{O} 3-\mathrm{Mn} 1-\mathrm{O} 5$	$100.14(13)$	$\mathrm{O} 5-\mathrm{Mn} 1-\mathrm{O} 1$	$89.60(15)$
$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{O} 7$	$106.28(14)$	$\mathrm{O} 7-\mathrm{Mn} 1-\mathrm{O} 1$	$96.86(15)$
$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{O} 7$	$72.05(13)$		

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N7-H7A \cdots O9	0.88	2.12	2.811 (5)	135
N7-H7B..N9	0.88	2.11	2.988 (6)	172
N8-H8B \cdots O14	0.88	1.95	2.830 (6)	174
$\mathrm{N} 10-\mathrm{H} 10 A \cdots \mathrm{O} 15$	0.87	1.82	2.665 (9)	161
N11-H11B \cdots O9	0.90	2.04	2.925 (5)	167
N12-H12A \cdots N5	0.88	2.09	2.964 (6)	172
O10-H10B $\cdots \mathrm{O} 13$	0.84 (8)	1.82 (8)	2.645 (5)	167 (11)
O13-H13A \cdots N 4	0.83 (6)	2.08 (2)	2.910 (5)	167 (7)
O15-H15 \cdots O11	0.861 (10)	1.98 (8)	2.767 (9)	151 (15)
$\mathrm{N} 3-\mathrm{H} 3 A \cdots \mathrm{O}^{\text {i }}$	0.88	1.89	2.757 (5)	168
N6-H6A \cdots O $4^{\text {ii }}$	0.88	2.05	2.856 (5)	152
N6-H6B $\cdots \mathrm{O}^{\text {i }}$	0.88	2.06	2.924 (5)	168
$\mathrm{N} 10-\mathrm{H} 10 A \cdots \mathrm{O} 15^{\text {iii }}$	0.87	1.82	2.665 (9)	161
$\mathrm{N} 12-\mathrm{H} 12 B \cdots \mathrm{O} 1^{\text {iv }}$	0.88	2.07	2.838 (6)	146
$\mathrm{O} 11-\mathrm{H} 11 \mathrm{C} \cdots \mathrm{O}^{\text {v }}$	0.83 (9)	2.07 (9)	2.875 (6)	165 (10)
$\mathrm{O} 12-\mathrm{H} 12 \mathrm{C} \cdots \mathrm{O} 8^{\text {vi }}$	0.83 (6)	1.75 (7)	2.560 (6)	162 (7)
$\mathrm{O} 12-\mathrm{H} 12 \mathrm{D} \cdots \mathrm{O}^{\text {iv }}$	0.85 (5)	1.91 (7)	2.671 (6)	151 (7)
$\mathrm{O} 12-\mathrm{H} 12 \mathrm{E} \cdots \mathrm{O} 12^{\text {iv }}$	1.24 (2)	1.24 (2)	2.445 (10)	163 (15)
$\mathrm{O} 13-\mathrm{H} 13 B \cdots \mathrm{O}^{\text {vii }}$	0.84 (5)	1.99 (6)	2.794 (5)	163 (7)
O14-H14A $\cdots \mathrm{O}^{\text {i }}$	0.84 (4)	1.87 (2)	2.646 (5)	153 (5)
$\mathrm{O} 14-\mathrm{H} 14 B \cdots \mathrm{O}^{\text {viii }}$	0.84 (5)	2.06 (3)	2.841 (5)	154 (5)
$\mathrm{C} 12-\mathrm{H} 12 \cdots \mathrm{O} 10^{\text {ix }}$	0.95	2.45	3.236 (6)	140

Symmetry codes: (i) $x+\frac{1}{2},-y+\frac{3}{2}, z+\frac{1}{2}$; (ii) $x+\frac{1}{2}, y+\frac{1}{2}, z$; (iii) $-x, y,-z-\frac{1}{2}$; (iv) $-x, y,-z+\frac{1}{2}$; (v) $-x,-y+1,-z$; (vi) $x, y, z-1$; (vii) $x+\frac{1}{2},-y+\frac{3}{2}, z-\frac{1}{2}$; (viii) $-x, y,-z+\frac{3}{2}$; (ix) $-x,-y+2,-z+1$.

C - and N -bound H atoms were positioned geometrically, with C $\mathrm{H}=0.95 \AA$ and $\mathrm{N}-\mathrm{H}=0.88 \AA$, and allowed to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. O-bound H atoms were located in a difference Fourier map and allowed to refine with distance restraints of $\mathrm{O}-\mathrm{H}=0.84(1) \AA$ and $\mathrm{H} \cdots \mathrm{H}$ (in water) $=1.30$ (2) \AA, except for atom $\mathrm{H} 12 E$, part of the $\mathrm{H}_{5} \mathrm{O}_{2}{ }^{+}$cation, which resides on a twofold axis and was not restrained. This atom was freely refined but displays a large isotropic displacement parameter of $0.11 \AA^{2}$ that causes an Alert A in checkCIF and we suggest that it is slightly disordered with respect to its position on the twofold axis. The H atom bonded to O 15 , part of the OH^{-}ion that is disordered with respect to the

Table 3
Summary of short contacts involving $\mathrm{C}=\mathrm{O} \cdots \pi$ interactions (\AA).

$\mathrm{C}=\mathrm{O}$	Aromatic ring	$\mathrm{O} \cdots$ centroid
$\mathrm{C} 7=\mathrm{O} 4$	(N1/C2-C6)	$3.750(4)$
$\mathrm{C} 8=\mathrm{O} 6$	(N2/C9-C13)	$3.262(4)$
$\mathrm{C} 14=\mathrm{O} 8$	(N9/N10/C18/C19/N9 $\left.{ }^{\mathrm{iv}} / \mathrm{C} 19^{\mathrm{iv}}\right)^{\mathrm{iii}}$	$3.536(4)$
Symmetry codes: (i)	$x, 1-y, \frac{1}{2}+z ;\left(\right.$ (ii) $-x-\frac{1}{2}, \frac{3}{2}-y, 1-z ;$ (iii) $-x, y, \frac{1}{2}-x ;$ (iv) $-x, y$,	
$-z-\frac{1}{2}$.		

twofold axis, was located in a difference map and refined with a distance restraint of $0.86(1) \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{O} 15)$.

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

The authors acknowledge the support of Tarbiat Moallem University and the University of California, Davis, for the purchase of the X-ray diffractometer.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: GZ3154). Services for accessing these data are described at the back of the journal.

References

Aghabozorg, H., Aghajani, Z. \& Sharif, M. A. (2006). Acta Cryst. E62, m1930m1932.
Aghabozorg, H., Attar Gharamaleki, J., Daneshvar, S., Ghadermazi, M. \& Khavasi, H. R. (2008). Acta Cryst. E64, m187-m188.
Aghabozorg, H., Ghasemikhah, P., Soleimannejad, J., Ghadermazi, M. \& Attar Gharamaleki, J. (2006). Acta Cryst. E62, m2266-m2268.
Aghajani, Z., Sharif, M. A., Aghabozorg, H. \& Naderpour, A. (2006). Acta Cryst. E62, m830-m832.
Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Filigenzi, M. S., Puschner, B., Aston, L. S. \& Poppenga, R. H. (2008). J. Agric. Food Chem. 56, 7593-7599.
Huang, D., Wang, W., Zhang, X., Chen, C., Chen, F., Liu, Q., Liao, D., Li, L. \& Sun, L. (2004). Eur. J. Inorg. Chem. pp. 1454-1464.
Limburg, J., Brudvig, G. W. \& Crabtree, R. H. (1997). J. Am. Chem. Soc. 119, 2761-2762.
MacDonald, J. C., Luo, T.-J. M. \& Palmore, G. T. R. (2004). Cryst. Growth Des. 4, 1203-1209.
Perpétuo, G. J. \& Janczak, J. (2006). Acta Cryst. C62, o372-o375.
Sharif, M. A., Aghabozorg, H. \& Moghimi, A. (2007). Acta Cryst. E63, m1599m1601.
Sharif, M. A., Aghabozorg, H., Shokrollahi, A., Kickelbick, G., Moghimi, A. \& Shamsipur, M. (2006). Pol. J. Chem. 80, 847-863.
Sharif, M. A., Aghajani, Z. \& Aghabozorg, H. (2007). Anal. Sci. 23, x147-x148.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Zhang, X.-L., Chen, X.-M. \& Ng, S. W. (2005). Acta Cryst. E61, o156-o157.

